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Abstract. Some classical neural network systems including the Hartline–Ratliff system, the
Linsker system, and the general sigmoid dynamics, are reconsidered within a more general class
of dynamical systems. For synchronous dynamics the existence, uniqueness, local and global
stability of stationary points is investigated. For asynchronous dynamics a convergence theorem
is proved. The application of the theory of quasimonotone flows leads to some insights so far
not widespread in network theory.

1. Introduction

Since the first neural networks appeared fifty years ago (McCulloch–Pitts [25]) as nets of
(0, 1)-neurons there has been a tendency to provide these systems with more structure:
continuous state, continuous time, delays, stochastic actions, etc. By now it seems difficult
to separate network theory from dynamical systems, or stochastic processes. There are
differences in notation, though. Whereas in dynamical systems one tries to present results
in coordinate-free form, in a general qualitative setting, network theory uses coordinates
representing (the states of) single units or ‘neurons’. Where dynamical systems describe
nonlinearities by their qualitative features (monotone, concave, etc), networks use concrete
examples. The most important difference results from the degree of smoothness required.
In dynamical systems one usually studies smooth mappings and vector fields and only
occasionally does one introduce a discrete caricature as a model example. In network
theory there are many piecewise linear and even piecewise constant functions that lead
to a—false—impression that the systems are more explicit, easier to analyse, or easier to
simulate. However, the tools of calculus are powerful, and any degree of discreteness is an
obstacle to a thorough analysis.

In this review we try to give a unified analysis to some networks that have appeared
in the literature, and we try to connect this approach to the present theory of dynamical
systems. The results apply to the Hartline–Ratliff system [10, 13, 31], the Linsker dynamics
[6–8, 22], and a general sigmoid dynamics [1, 14]. These networks are characterized by
three properties: there is a linear operation given by a matrix, there is a ‘simple’ nonlinear
function which makes the network a non-trivial dynamical system, and there is monotonicity
with respect to a partial ordering of the underlying space. This latter aspect is the most
important property. Together with the possibility of asynchronous dynamics it is the only
justification to use a coordinate notation, and it is probably the only way to establish a
connection to non-trivial results from dynamical systems theory. The networks will be
dynamical systems inRn, with the usual coordinate notation.
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2. The systems

Here we define the system to be studied. There is a family of scalar functionsfj : R → R,
j = 1, . . . , n that describe the local action of the neurons. These functions are assumed
Lipschitz continuous and non-decreasing.

There is a real vectorb ∈ Rn, b = (bj ). Its components can be considered as ‘inputs’.
Finally there is a real matrixA = (ajk) of ordern that describes the interaction between
the neurons.

Discrete time is denotedt = 0, 1, 2, . . . , continuous timet ∈ R. The discrete time
variable will be denoted as a superscriptxt or as an argumentx(t), the continuous time
variable always asx = x(t).

We start with coordinate notation and then pass to a more convenient semi-abstract
setting. In coordinate notation the discrete time system is

xt+1
j =

n∑
k=1

ajkfk(x
t
k)+ bj j = 1, . . . , n t = 0, 1, 2, . . . . (1)

We introduce the ‘Nemytskij operator’f : Rn → Rn acting coordinate-wise

(f (x))j = fj (xj ) j = 1, . . . , n. (2)

Then the system (1) reads

xt+1 = Af (xt )+ b. (3)

If f has identical components then we use the same symbol for the vector and the scalar
function, f = (f, . . . , f ). In the corresponding continuous time system we introduce a
time constantτ > 0,

τ ẋ + x = Af (x)+ b. (4)

In the older literature much attention has been paid to the fact that (3) can be written in
equivalent form

yt+1 = f (Ayt + b). (5)

The correspondence is established by the transformation

y = f (x) (6)

x = Ay + b. (7)

This equivalence is somewhat unexpected, since neither (6) nor (7) need to be invertible.
It may be worth the effort to study this phenomenon in greater detail.

Consider two functionsF,G : Rn → Rn and two discrete dynamical systems

xt+1 = G(F(xt )) t = 0, 1, 2, . . . (8)

yt+1 = F(G(yt )) t = 0, 1, 2, . . . . (9)

If {xt } is a trajectory of (8), then{yti }, yt = F(xt ), is a trajectory of (9). If{yt } is a
trajectory of (9) then{xt }, xt = G(yt ) is a trajectory of (8).
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On the other hand, fromx0 one getsy0 = F(x0), thenG(y0) = G(F(x0)) which is
x1 (and notx0). Thus the systems (8) and (9) are not conjugate. Going fromx to y and
then back tox leads to the dynamical system (8) on the image set ofG ◦ F . Nevertheless,
equations (8), (9) have essentially (after the first step) the same trajectories, limit sets, etc.

If the functionsfj are invertible and differentiable then a similar transition is possible
in the system (4), leading to

τ ẏ = f ′(f −1(y))(Ay − b − f −1(y)). (10)

Heref ′ is the derivative off , andf −1 is the inverse function.
In view of the coordinate notation it makes sense to introduce coordinate norms in the

form of weighted sum norms

‖x‖α =
n∑
j=1

αj |xj | (11)

whereα = (α1, . . . , αn) is a vector of positive components.
If nothing else is said, thenα = (1, . . . ,1),

‖x‖ =
n∑
j=1

|xj |. (12)

We assume that the functionsfj have a global Lipschitz boundLj ,

|fj (u)− fj (v)| 6 Lj |u− v|. (13)

Let

L = max
16j6n

Lj . (14)

Then the ‘right-hand side’ of the differential equation (4), i.e.

ẋ = 1

τ
[Af (x)+ b − x] (15)

has a global Lipschitz bound. Therefore the solutions of the system (4) exist for all time.
We shall consider the special cases where the matrixA has non-negative or non-positive

entries. Then we use the usual partial ordering of the spaceRn induced by the cone
Rn

+ = {x ∈ Rn : x > 0}. Thusx > y if xj > yj for j = 1, . . . , n. If the matrixA has
non-positive entries, instead of equation (5) we write

yt+1 = f (c − Byt) (16)

with a non-negative matrixB = (bjk), bjk > 0, andc = (cj ). The corresponding continuous
time system is

τ ẋ + x = −Bf (x)+ c. (17)

An important quantity is the spectral radius of a matrix, i.e. the maximal modulus of
any eigenvalue of that matrix. The spectral radius of a matrixB is calledρ(B).

For any matrixB = (bjk) we introduce the absolute value of that matrix,|B| = (|bjk|).
It is known thatρ(B) 6 ρ(|B|) (see [2]).

Now we proceed to the qualitative analysis of the systems (3)= (5) and (4).
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3. Dissipativeness and stationary points

The system is called dissipative if there is a compact invariant setM such that for every
y0 ∈ Rn there is a finitet such thatyt ∈ M.

Proposition 1. Suppose one of the following hypotheses is satisfied.
(i) The functionsfi are uniformly bounded.
(ii) The matrixA has non-negative entries and the functionsfi have uniform upper bounds.
(iii) The matrixA has non-positive entries and the functionsfj have uniform lower bounds.
Then the system (5) is dissipative.

Proof. The first assertion is trivial. The second and third are similar. We show the third
for the system (16). Letfj (x) > aj for j = 1, . . . , n and allx. Let a = (aj ). For y ∈ Rn,
we havef (c − By) > a, andf (c − Ba − B(f (c − By) − a)) 6 f (c − Ba). ThusRn is
mapped into the compact convex setM = {x : a 6 x 6 f (c − Ba)}. �

Stationary solutionsx of the systems (3) and (4) satisfy the equation

x = Af (x)+ b. (18)

Corollary 2. If any of the assumptions of proposition 1 is satisfied then the corresponding
system (5) or (16), (4) or (17), has a stationary point.

Proof. Apply Brouwer’s fixed point theorem to the setM. �

Proposition 3. Let ρ = ρ(|A|) be the spectral radius of the matrix|A| and letL be the
global Lipschitz constant forf . AssumeρL < 1. Then the following is true.
(i) For any vectorb, equation (18) has a unique solutionx̄b.
(ii) x̄b is a global attractor for the system (3).
(iii) x̄b is a global attractor for the system (4).

Proof. Define the matrix|A|ε = (|ajk| + ε) for ε > 0. Thenρ(|Aε |) > ρ(|A|) and
ρ(|A|ε)L < 1 for ε small. The matrix|A|ε is positive and it has a positive left eigenvector
αT = (α1, . . . , αn). With this vectorαT form the norm (11). In view of

‖f (Ay + b)− f (Az + b)‖ 6 L‖A(y − z)‖ 6 LαT|A(y − z)|

6 LαT|A|ε |y − z| 6 Lρ(|A|ε)αT|y − z|
6 Lρ(|A|ε)‖y − z‖.

Thus the mappingy 7→ f (Ay + b) is a global contraction. This shows (i) and (ii). Now
consider equation (4). One can assumeτ = 1. Let x̄ be the unique stationary solution and
let x(t) be any other solution. Define the measurable functionsdj (t) by

dj (t) =


fj (xj (t))− fj (x̄j )

x(t)− x̄j
if xj (t) 6= x̄j

0 if xj (t) = x̄j

and the matrixD(t) = (dj (t)δjk). Then the functiony(t) = (x(t)− x̄)et satisfies the linear
equation

ẏ = AD(t)y.

A simple argument (see [11]) yields‖y(t)‖ 6 constant×exp((ρ(|A|)+ ε)Lt) for any small
ε > 0. �
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At any pointx wheref ′(x) exists, the JacobianJ (x) of the right-hand side of (3) exists
and is given byAf ′(x) wheref ′ is the diagonal matrix(f ′

j (xj )δjk). Similarly, the Jacobian
of (15) is (1/τ)(Af ′(x)− I ).

Proposition 4. Let x̄ be a stationary point of the systems (3) and (4) such thatf ′(x̄) exists.
If the spectral radius of the matrixAf ′(x̄) is less than 1 then the pointx̄ is a local attractor
of the system (3) as well as of the system (4).

Proof. Since the spectrum is in the unit circle, stability in the discrete time case follows.
In the continuous time case observe that the spectrum ofAf ′(x̄) − I is located in the left
half-plane. �

Proposition 5. LetA be symmetric and assume that the functionsfj are strictly increasing.
If f ′(x̄) exists then the eigenvalues ofAf ′(x̄) are real.

Proof. A is a symmetric andf ′(x̄) is symmetric and positive definite. Thus the eigenvalues
of the product are real. �

The contraction property in proposition 3 is just a suffient condition for the existence
and uniqueness of the stationary state. In the case of piecewise linear mappings one can
obtain stronger results as will be shown in section 6.

4. Quasimonotone systems

We start from a general differential equationẋ = F(x) whereF : Rn → Rn is continuously
differentiable. LetRn be endowed with the partial ordering induced by the coneRn

+. With
respect to the nonlinear system it is important to distinguish between several notions of
positivity and invariance.

In some situations it is important to know whether non-negative solutions stay non-
negative, i.e. whether the first orthantRn

+ in the state spaceRn is positively invariant with
respect to the flow. Necessary and sufficient condition for this property to hold is that the
vector fieldF is ‘inward’ on the boundary ofRn

+, i.e. thatx > 0, xi = 0 impliesFi(x) > 0.
Here we are interested in a quite different notion of positivity which is connected to the

positivity of the tangent vector of the flow rather than to the state.
Let F ′(x) be the derivative (Jacobian) of the functionF at the pointx (not necessarily a

stationary point).F ′ can be represented as the matrix of partial derivativesF ′ = (∂Fj/∂xk),
depending onx. SupposeF has the property that

∂Fj

∂xk
(x) > 0 for k 6= j and all x. (19)

Then the system is called cooperative. Similarly, if

∂Fj

∂xk
(x) 6 0 for k 6= j and all x (20)

then the system is called competitive. If the system is either cooperative or competitive
then it is called quasimonotone. If the system is competitive then the systemẋ = −F(x)
is cooperative and vice versa.
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Cooperative systems have several important properties. The most basic is the following.
If, for some t0, the tangent vectoṙx(t0) ∈ Rn

+, then ẋ(t) ∈ Rn
+ for all t > t0. A first

implication is thatx(t) is monotone, i.e. each component is non-decreasing. Thus either
x(t) does not stay bounded, or it converges to a point. Thus, in a cooperative system with
bounded trajectories,̇x(t0) > 0 implies that the limit set is a point.

Now consider the system (5). The following observation follows from the monotonicity
of the functionf .

Proposition 6. Let the matrixA have the property thatajk > 0 (ajk 6 0), for j 6= k. Then
the system (5) is cooperative (competitive).

Probably the most fundamental result on quasimonotone systems is the ‘flatness’ of
limit sets. To understand this result we need several definitions. Two pointsx, y ∈ Rn are
called related if eitherx < y or y < x.

Theorem 7 [15, 16]. Let the system be cooperative or competitive. Letω be a limit set.
Thenω does not contain two related points.

From this result follows another important observation.

Theorem 8 [15, 16]. Let the system be cooperative or competitive. Letp > 0 be a positive
vector and letHp = {x : pTx = 0} the hyperplane with normal vectorp. Let ω be a limit
set. LetP be the projection ontoHp alongp. Let ω̃ = Pω. Then the mappingP : ω → ω̃

is one-to-one. The set̃ω is a limit set of an(n− 1)-dimensional system.

The theory of quasimonotone systems can be adapted to the discrete time case. Such
systems (actually the period maps in periodic differential equations) have been studied by
de Mottoni and Schiaffino [26] and by Hale and Somolinos [12]. LetRn be endowed with
the usual coordinates. Consider a mappingG : Rn → Rn. The corresponding dynamical
systemxt+1 = G(xt ) is called cooperative if the JacobianG′ = ∂Gj/∂xk has the property
that

∂Gj

∂xk
(x) > 0 for all x. (21)

Similarly, if

∂Gj

∂xk
(x) 6 0 for all x (22)

then the system is called competitive. For a cooperative system we find thatxt > xt−1

implies xt+1 > xt . This observation has an elementary though interesting consequence.

Proposition 9. Let the system be cooperative or competitive. Suppose theω-limit set of
some point contains two related points. Then the limit set is a periodic orbit.

Proof. First assume that that the system is cooperative. Leta, b ∈ ω(x0) and a < b.
Then there arei < j such thatxi < xj . We can assumei = 0. Then the sequencexkj ,
k = 0, 1, . . . is non-decreasing, it converges to somex̄0, similarly xl+kj → x̄l , l = 1, 2, . . ..
But x̄j = x̄0. In the competetive case just consider the system generated byG ◦G which
is cooperative. �

Thus any limit set that contains infinitely many points does not contain any related
points.
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5. Classical neural networks, examples

5.1. The Hartline–Ratliff model

Originally this system was introduced to model the network in the component eye of the
horseshoe crabLimulus [10, 13, 31]. It has been essential in understanding phenomena
like lateral inhibition, edge enhancement, contrast enhancement. Usually the equations are
written in the form

yt+1 = ϑ(c − Byt). (23)

Here c is an input,B = (bjk) is a non-negative matrix,bjk > 0, andϑ is the rectifier
function

ϑ(y) = y+ = max(y, 0) = 1
2(y + |y|). (24)

Thus the Hartline–Ratliff system is given in the form (3); the equivalent form (5) is

xt+1 = c − Bϑ(xt ). (25)

The continuous version of the Hartline–Ratliff system is

τ ẋ + x = c − Bϑ(x). (26)

The system (26) has been studied in [15, 27].

Corollary 10. The system (16) in general and the Hartline–Ratliff system in particular is
competitive. Hence limit sets are flat.

In principle it is easy to determine all stationary points of the system (23). Suppose
y is a stationary point. Theny > 0 and, after renumbering coordinates,y = (u, 0) with
u > 0. Choose an appropriate block partition of the matrixB and the vectorc. Thenu is a
solution to a linear system(I + B̃)u = c̃. Thus all possible stationary points can be found
by inspecting 2n systems of linear equations.

5.2. The Linsker model

The Linsker system has been proposed to simulate the primary steps of optical perception.
It has the form (5) with the functionf = (f, . . . , f ) and

f (x) =


1 if x > 1

x if |x| 6 1

−1 if x < −1.

(27)

In concrete applications it is written in the form

yt+1
j = f

(
ytj + b −

n∑
k=1

[qjk + θk]y
t
k

)
. (28)

In this caseA = I − Q − eθT whereI is the identity matrix,Q = (qjk), andeθT is the
dyadic product (matrix of rank one) of the column vectore = (1, . . . ,1)T and the row
vectorθ = (θ1, . . . , θn). The continuous version of the Linsker system is

τ ẋ + x = (I −Q− eθT)f (x)+ b. (29)

For fixedQ this system is competitive for non-negativeθ and cooperative for large negative
θ . After the publication of Linsker’s paper [22] much attention has been paid to the analysis
of the dynamical properties of (28) [6–8, 23, 24].
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5.3. The obstacle problem and quadratic programming

The obstacle problem is a classical generalization of the Dirichlet problem, see, e.g., [19].
Let � ∈ Rm be a bounded domain and letf,ψ : �̄ → R, g : ∂� → R be given functions.
Find u : �̄ → R such that−1u > f in �, u > ψ in �, (−1u − f )(u − ψ) = 0 in �,
u = g on ∂�. In the casem = 2 one can visualizeu andψ as surfaces. At any point of
� eitheru is ‘free’ and satisfies the differential equation or it ‘touches’ and equalsψ . One
can assumeg = 0. Then define the convex setK = {u ∈ H 1

0 (�), u > ψ} and minimize the
functionalJ (u) = ∫

�
[∇u · ∇u− 2f u] dx onK. Under suitable smoothness conditions, the

two problems are equivalent. The discrete analogue is the following quadratic optimization
problem. Given a positively definite symmetric matrixC = (cjk), and vectorsd = (dj ),
ψ = (ψj ), and let

J (x) = 1

2

n∑
j,k=1

cjkxjxk −
n∑
j=1

djxj . (30)

Minimize J (x) under the conditionx > ψ . Under suitable conditions the solution can
be approximated by the following procedure [3]. Choose a vectorx and a coordinatei.
Solve the one-dimensional variational problem to minimizeJ (x + αei) whereei is the ith
coordinate vector. The solution isz = (zj ), wherezj = xj for j 6= i andzi = xi+di−eT

i Ax.
Then determine the new vector according to

x̃ =


xj if j 6= i

zi if j = i andzi > ψi

ψi if j = i andzi 6 ψi .

In other words

x̃i = max

(
ψi, xi + di −

n∑
k=1

cikxk

)
.

We introduce a new variabley = x − ψ . Then the system assumes the form

yt+1 = f (Ayt + b)

with A = I − C, b = d + Cψ , f (y) = y+. Thus we have shown that the discrete obstacle
problem is a network system that is a direct generalization of the Hartline–Ratliff system.

5.4. Sigmoid dynamics

It appears that the dynamical system (3) or (5), with a general matrixA (no assumptions
an the signs of the entries nor symmetry) and general, though increasing, functionsfi , has
no special properties (see section 6, however).

6. Uniqueness of the stationary solution

Under the hypothesis of proposition 1 there is a unique stationary state for every inputb. In
particular the stationary state is unique, i.e. the mappingH : Rn → Rn, H(x) = x−Af (x)
is univalent. The hypothesis of proposition 1 is close to being optimal with respect to
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contractivity, but not with respect to univalence. The problem of univalence can be
approached in a general way. Let� ⊂ Rn be an open domain.H : � → Rn be a
continuously differentiable mapping. If the JacobianH ′(x) is non-singular at a pointx ∈ �
thenH is locally invertible (in a neighbourhood ofx). However, ifn > 1, then there are
examples whereH ′(x) is invertible for everyx ∈ � and nevertheless the mapH is not
univalent, even if the set� is convex.

The theorem of Gale and Nikaido gives a sufficient condition for univalence that is well
suited to neural networks. The set� called an open rectangle (or an open order interval)
if � = {x = (xj ) : pj 6 xj 6 qj , j = 1, . . . , n} wherep, q ∈ Rn with pj < qj for
j = 1, . . . , n. A matrix is called aP -matrix iff all its principal minors are positive. A
matrix is called a weakP -matrix if its determinant is positive and all its (other) principal
minors are non-negative.

Theorem 11 [9]. Let � be an open rectangle, letH : � → Rn be continuously
differentiable. Assume thatH ′(x) is a weakP -matrix for all x ∈ �. ThenH is univalent.

We apply this theorem to equation (18).

Proposition 12. Let the functionf be continuously differentiable. Assume that for all
x ∈ Rn the matrixI − Af ′(x) is a P -matrix. Then to everyb ∈ Rn there is at most one
stationary point.

Sandberg [29] considers a similar problem for the equationAx+f (x) = b. Essentially
he shows thatx 7→ Ax + f (x) is univalent ifA is a weakP -matrix andf is increasing.
This result can be derived from the Gale–Nikaido theorem by observing that the sum of
a weakP -matrix and a non-negative diagonal matrix is a weakP -matrix. For lack of
differentiability one cannot directly apply the Gale–Nikaido theorem to piecewise linear
mappings. We infer a result of Samelsonet al [28] in the form given by Kuhn and L̈owen
[11, 20]. LetS, T be any real matrices of ordern. Define the mappingg : Rn → Rn by

g(x) = Sx+ − T x−. (31)

Proposition 13 [28]. The following assertions are equivalent:
(i) g is injective.
(ii) g is bijective.
(iii) Let P denote any diagonal matrix with diagonal entries from{0, 1}. The determinants

det(SP + T (I − P)))

are all non-zero and have the same sign.
(iv) S andT are invertible, and all principal minors ofS−1T (and ofT −1S) are positive.

This result can be applied to several problems, e.g. the Hartline–Ratliff model. The
equationx = c − Bx for stationary solutions can be written(I + B)x+ − Ix− = c, hence
it assumes the form (29) withS = I + B, T = I . Thus we have the following result.

Proposition 14 [11]. The following two assertions are equivalent.
(i) All principal minors of the matrixI + B are positive.
(ii) For any inputc the Hartline–Ratliff system has a unique stationary point. If the matrix
B is symmetric then the following statement is equivalent to (i) or (ii)
(iii) The matrix I + B is positively definite.
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The uniqueness problem for the Linsker system is more involved. The equation for
stationary points is (18) withf given by (25). Thus one has to study the mapping
g(x) ≡ x − Af (x) and solve the equationg(x) = b. The hyperplanes{x : xj = +1}
and {x : xj = −1} divide Rn into a chamber systemC of 3n ‘chambers’. This chamber
system has branching numberb(C) = 4. The branching number is the smallest number
b such that each face of codimension 2 has at mostb neighbouring chambers (see [20]).
On a given chamber each of the coordinatesxj is either less than−1 or between−1 and
+1 or greater than+1. The functiong : Rn → Rn is a piecewise affine mapping, i.e.g
is well-defined and on each chamberg is an affine mapping. Consider a fixed chamber.
Assume the coordinates are numbered such that the first group satisfiesxj < −1, the second
group−1 6 xj 6 1 and the third groupxj > 1. Define the corresponding block partition
of the matrixA and of the vectorx. Then

x − Af (x) =
 x1

x2

x3

 −
A11 A12 A13

A21 A22 A23

A31 A32 A33

  −e
x2

e

 (32)

x − Af (x) =
 I −A12 0

0 I − A22 0

0 −A32 I

  x1

x2

x3

 −
 −A11e + A13e

−A21e + A23e

−A31e + A33e

 (33)

where I denotes the identity matrix of any order ande = (1, . . . ,1)T. A mapping
g : Rn → Rn is called proper if for any sequencezk ∈ Rn with ‖zk‖ → ∞ also
‖g(zk)‖ → ∞. In the present case the functiong is proper since the termAf (x) is
bounded. A piecewise affine mapping is called coherently oriented if on each chamber the
determinant of the affine map is non-zero and if all these determinants have the same sign.
In the present case one has to check the determinant of the matrix in (33). This determinant
is equal to det(I − A22) and this is a principal minor of the matrixI − A.

We use a result from [20] that extends results of Schramm [30].

Proposition 15 [20]. Let g be a piecewise affine mapping on a chamber systemC with
branching numberb(C) 6 4. Then the following are equivalent.
(i) g is coherently oriented and proper.
(ii) g is bijective.

From this proposition we infer the following theorem.

Theorem 16. The following two assertions are equivalent:
(i) All principal minors of the matrixI − A are positive.
(ii) For any inputb the Linsker system has a unique stationary point. For a symmetric
matrix A the following statement is equivalent to (i) or (ii):
(iii) The matrix I − A is positively definite.

If the matrix A has the formA = I − Q − eθT then one has to check the principal
minors of the matrixQ+ eθT.
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7. Asynchronous dynamics

In equations (3), (5) we have considered dynamical systems in the classical sense. These
dynamical systems have the form of networks: There is a natural choice of coordinates
j = 1, . . . , n. By definition the dynamics is synchronous. In these discrete time systems
one can also consider asynchronous dynamics. An asynchronous dynamics requires two
definitions. First one has to define the local action, i.e. the evaluation of a single neuron.
Then one has to specify the process which defines the sequence of evaluation sites. The
first step is standard. The evaluation at positioni is given by

(Fi(y))j =


yj if j 6= i

fi

( n∑
k=1

aikyk + bi

)
if j = i .

(34)

For the second step one can specify a stochastic process that ensures that all neurons are
evaluated again and again. Here we use the simple procedure that theith neuron is selected
with probability ai > 0 (

∑
i ai = 1). A less simple process that makes repeated evaluation

of the same neuron less probable, has been suggested by Hopfield [5, 17].
The notion of dissipativeness can be carried over to the case of asynchronous dynamics.

A set M ∈ Rn is called invariant under the asynchronous dynamics ifFi(M) ⊂ M for
i = 1, . . . , n. The system is called dissipative with respect to the asynchronous dynamics
if for every starting point the sequence of iterates reaches the setM in a finite number of
steps a.s.

Proposition 17. Suppose any of the hypotheses of proposition 1 is satisfied. Then the
system is dissipative with respect to the asynchronous dynamics.

Proof. Apply the proof of proposition 1 to the individual components. The following
observation leads to bounds for the stop time (with respect to arriving inM) In case (i) the
iterate is inM after each neuron has been evaluated at least once. In cases (ii) and (iii)
the iterates are inM after ‘two full sweeps’, i.e. after the following has happened: in a
first ‘sweep’ each neuron has been evaluated at least once to get the lower bound (in case
(iii)), in a second sweep each neuron is evaluated once to get the upper bound. We need
the following lemma.

Lemma 18. Let f : R → R be a continuous strictly increasing function. Then fora, z ∈ R
the following inequality holds:

f (z)z − f (a)z >
∫ f (z)

f (a)

f −1(v) dv. (35)

Equality holds only forz = a.

Proof. It suffices to prove the lemma for continuously differentiablef . The general case
follows by approximation. The functionF(z) = ∫ z

z0
f (u) du is convex, thus by Taylor’s

formula

F(z) > F(a)+ F ′(a)(z − a)



5030 J Feng and K P Hadeler

F ′(a)(z − a) 6 F(z)− F(a)

f (a)(z − a) 6
∫ z

a

f (u) du

= f (z)z − f (a)a −
∫ z

a

f ′(u)u du

by partial integration. Substitutev = f (u), dv = f ′(u)du to obtain

f (a)z 6 f (z)z −
∫ f (z)

f (a)

f −1(v) dv

which is equation (35). The assertion on equality follows by considering the remainder
term in Taylor’s formula. �

Next we consider the special case thatA is a symmetric matrix. Define an energy
function

V (y) =
n∑
j=1

∫ yj

0
f −1(s) ds − 1

2

n∑
j,k=1

ajkyjyk −
n∑
j=1

bjyj . (36)

Theorem 19. Let A = (ajk) be symmetric andajj > 0 for j = 1, . . . , n. Then, for
i = 1, . . . , n,

V (Fi(y)) 6 V (y) for y ∈ Rn with y ∈ f (R).
The equalityV (Fi(y)) = V (y) holds if and only ifFi(y) = y.

Proof. Denotey = (yj ) andFi(y) = ỹ = (ỹj ). Then ỹj = yj for j 6= i and

ỹi = fi

( n∑
k=1

aikyk + bi

)
. (37)

Using symmetry, the functionalV (y) can be written

V (y) =
∑
j 6=i

∫ yj

0
f −1
j (s) ds − 1

2

∑
j,k 6=i

ajkyjyk −
∑
j 6=i

bj yj +
∫ yi

0
f −1
i (v) dv

−
∑
k 6=i

aikyiyk − biyi − 1

2
aiiy

2
i (38)

V (ỹ) =
∑
j 6=i

∫ yj

0
f −1
j (s) ds − 1

2

∑
j,k 6=i

ajkyjyk −
∑
j 6=i

bj yj +
∫ ỹi

0
f −1
i (v) dv

−
∑
k 6=i

aikỹiyk − bi ỹi − 1

2
aii ỹ

2
i . (39)

Thus, withz = ∑
k aikyk + bi , ỹ = f (z),

V (ỹ)− V (y) =
∫ ỹi

yi

f −1
i (v) dv −

∑
k 6=i

aik(ỹi − yi)yk − 1

2
aii(ỹ

2
i − y2

i )− bi(ỹi − yi)

= − (fi(z)− yi)z +
∫ fi (z)

yi

f −1
i (v) dv − 1

2
aii(ỹi − yi)

2 (40)
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There isa ∈ R with yi = fi(a). From lemma 18 it follows thatV (Fi(y)) 6 V (y). Suppose
the right-hand side in (40) vanishes. Then the first term vanishes. In view of Lemma
18 z = a and ỹi = fi(z) = fi(a) = yi , Fi(y) = y. By linear superposition we get the
corresponding result for the stochastic selection procedure. Letyt+1 be the random variable
that is obtained by evaluating theith unit with probabilityai . Then

E(V (yt+1)|yt ) 6 V (yt ) for y ∈ f (Rn). (41)

Therefore, the functionV is a supermartingale on the set{y ∈ Rn : y ∈ f (R)}.
A sufficient condition for convergence ofV (yt ) a.s. is uniform integrability of the

supermartingale. A sufficient condition for the latter property is the existence of a lower
bound. In general the functionV will not be bounded below. A lower bound can be ensured
in several ways. Either one can prove that the system is dissipative (cf proposition 17) and
thus restrict the problem to a compact set. Or one can require that the leading term ofV

grows to+∞ at least quadratic for‖y‖ → ∞. Thus we get the following results. For the
system (5) letS be the set of stationary points. Forε > 0 let Sε = ∪y∈SB(y, ε) where
B(y, ε) is the open ball with centery and radiusε. For any realization{yt } define the
stopping time as inf{t : yt ∈ Sε}.

Theorem 20. Let A = (ajk) be symmetric andajj > 0 for j = 1, . . . , n. Let the system
be dissipative. Then the stopping time is finite a.s.

Proof. As long asyt 6∈ Sε

g(yt ) ≡ E(V (yt+1|yt ))− V (yt ) < 0. (42)

Let C be the compact set in the definition of dissipativeness. There is aδ = δ(ε) > 0 such
that −g(yt ) > δ for yt ∈ C \ Sε . Hence

Mt = V (yt )+ tδ (43)

is also a lower bounded supermartingale foryt ∈ C \ Sε . According to Doob’s theorem [4]
Mτ∧t is a lower bounded supermartingale whereτ ∧ t = min{τ, t}. From the convergence
theorem for supermartingales it follows that

lim
t→∞Mτ∧t = M < ∞ a.s. (44)

thus

lim
t→∞Mτ∧t = lim

t→∞(V (y
τ∧t )+ δ(τ ∧ t)) < ∞ a.s. (45)

Note thatV (yτ∧t ) is itself a bounded supermartingale, therefore limt→∞(τ ∧ t) < ∞ a.s.
which impliesτ < ∞ a.s. �

Corollary 21. (i) Let the matrix in the Linsker system be symmetric, i.e.Q + θeT is
symmetric, and 1− qjj − θj > 0 for j = 1, . . . , n. Then the stopping time is almost
certainly finite.
(ii) Let the matrixB = (bjk) of the Hartline–Ratliff system be symmetric (and of course
non-negative). Letbjj = 0 for j = 1, . . . , n. Then the stopping time is finite a.s.
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The linear casef (y) = y shows that the symmetry of the matrixA is a sufficient, but
not a necessary condition. If the matrixA has non-negative entries and if the selection
procedure is cyclic then a necessary and sufficient condition for convergence to equilibrium
is ρ(A) < 1 (the Stein–Rosenberg theorem, see [18]).

In the synchronous dynamics the existence and uniqueness of a stationary point, even if
it is a local attractor, is not sufficient to ensure global stability. The behaviour is different
with asynchronous dynamics.

Theorem 22. Assume the hypothesis of theorem 20. Further assume that there is exactly
one stationary point̄x. Then the asynchronous dynamics converges tox̄ a.s., i.e. the
probability distributionµt of yt converges toδx̄ .

Proof. see [21]. The uniqeness of the stationary point has been considered in propositions
and theorems 3, 11, 14. �
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[3] Céa J 1971Optimisation, Th´eorie et Algorithmes(Paris: Dunod) p 118 ff; 1978Lectures on Optimization,

Theory and Algorithms (Tata Institute of Fundamental Research, Bombay)(Berlin: Springer)
[4] Doob J L 1953Stochastic Processes(New York: Wiley)
[5] Feng J 1994 The convergence of the Hopfield type modelAdv. Math.23 (4) 451–63
[6] Feng J and Pan H 1993 Analysis of Linsker type Hebbian learning: rigorous resultsProc. 1993 IEEE Conf.

on Neural Networksvol III pp 1516–21
[7] Feng J, Pan H and Roychowdhury V P 1995 A Rigorous analysis of Linsker’s Hebbian learning network

Advances in the Neural Information Processing System 7ed G Tesauro, D Touretzky and T K Leen
(Cambridge, MA: MIT Press) pp 319–26

[8] Feng J, Pan H and Roychowdhury V P 1996 On neurodynamics with limiter function and Linsker’s
developmental modelNeural Comput.8 1003–19

[9] Gale D and Nikaido H 1965 The Jacobian matrix and global univalence of mappingsMath. Ann.159 81–93
[10] Hadeler K P 1974 On the theory of lateral inhibitionKybernetik (Biol. Cybern.)14 161–5
[11] Hadeler K P and Kuhn D 1987 Stationary states of the Hartline–Ratliff modelBiol. Cybern.56 411–17
[12] Hale J K and Somolinos A J 1983 Competition for fluctuating nutrientMath. Biol. 18 255–80
[13] Hartline H K and Ratliff F 1958 Spatial summation of of inhibitory influence in the eye ofLimulus and the

mutual interaction of receptor unitsJ. Gen. Physiol.41 1049–66
[14] Hertz J, Krogh A and Palmer R G 1991Introduction to the Theory of Neural Computation(Reading, MA:

Addison-Wesley)
[15] Hirsch M W 1982 Systems of differential equations which are competive or cooperative I. Limit setsSIAM

J. Math. Anal.13 167–79
[16] Hirsch M W 1985 Systems of differential equations which are competive or cooperative II, Convergence

everywhereSIAM J. Math. Anal.16 423–39
[17] Hopfield J J 1982 Neural networks and physical systems with emergent collective computational abilities

Proc. Natl Acad. Sci. USA79 2554–8
[18] Householder A S 1964The Theory of Matrices in Numerical Analysis(New York: Blaisdell)
[19] Kinderlehrer D and Stampacchia G 1980An Introduction to Variational Inequalities and their Applications

(New York: Academic)



Qualitative behaviour of some simple networks 5033

[20] Kuhn D and L̈owen R 1987 Piecewise affine bijections ofRn, and the equationSx+ − T x− = y. Linear
Alg. Appl.96 109–129

[21] Liggett T M 1985 Interacting Particle Systems(Berlin: Springer)
[22] Linsker R 1986 From basic network principle to neural architecture I–IIIProc. Natl Acad. Sci. USA83

7508–12, 8390–4, 8779–83
[23] Linsker R 1986 Self-organization in a perceptual networkComputer21 105–17
[24] Mackay D J C andMiller K D 1990 Analysis of Linsker’s application of Hebbian rules to linear networks

Network1 257–97
[25] McCulloch W S and Pitts W 1943 A logical calculus of the ideas immanent in neural netsBull. Math.

Biophys.5 115–37
[26] de Mottoni P and Schiaffino A 1981 Compettition systems with periodic coefficientsA geometric approach.

J. Math. Biol.11 319–35
[27] Morishita I and Yajima A 1972 Analysis and simulation of networks of mutually inhibiting neurons

Kybernetik (Biol. Cybern.)11 154–65
[28] Samelson H, Thrall R M and Wesler O 1958 A partition theorem for Euclideann-spaceProc. Am. Math.

Soc.9 805–07
[29] Sandberg I W 1971 Necessary and sufficient conditions for the global invertibility of certain nonlinear

operators that arise in the analysis of networksIEEE Trans. Circuit TheoryCT-18 260–63 (reprinted
Wilson A N Jr (ed) 1975 Nonlinear Networks (Piscataway, NJ: IEEE Press))

[30] Schramm R 1980 On piecewise linear functions and piecewise linear equationsMath. Oper. Res.5 510–22
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