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Abstract. Some classical neural network systems including the Hartline—Ratliff system, the
Linsker system, and the general sigmoid dynamics, are reconsidered within a more general class
of dynamical systems. For synchronous dynamics the existence, uniqueness, local and global
stability of stationary points is investigated. For asynchronous dynamics a convergence theorem
is proved. The application of the theory of quasimonotone flows leads to some insights so far
not widespread in network theory.

1. Introduction

Since the first neural networks appeared fifty years ago (McCulloch—Pitts [25]) as nets of
(0, 1)-neurons there has been a tendency to provide these systems with more structure:
continuous state, continuous time, delays, stochastic actions, etc. By now it seems difficult
to separate network theory from dynamical systems, or stochastic processes. There are
differences in notation, though. Whereas in dynamical systems one tries to present results
in coordinate-free form, in a general qualitative setting, network theory uses coordinates
representing (the states of) single units or ‘neurons’. Where dynamical systems describe
nonlinearities by their qualitative features (monotone, concave, etc), networks use concrete
examples. The most important difference results from the degree of smoothness required.
In dynamical systems one usually studies smooth mappings and vector fields and only
occasionally does one introduce a discrete caricature as a model example. In network
theory there are many piecewise linear and even piecewise constant functions that lead
to a—false—impression that the systems are more explicit, easier to analyse, or easier to
simulate. However, the tools of calculus are powerful, and any degree of discreteness is an
obstacle to a thorough analysis.

In this review we try to give a unified analysis to some networks that have appeared
in the literature, and we try to connect this approach to the present theory of dynamical
systems. The results apply to the Hartline—Ratliff system [10, 13, 31], the Linsker dynamics
[6-8, 22], and a general sigmoid dynamics [1, 14]. These networks are characterized by
three properties: there is a linear operation given by a matrix, there is a ‘simple’ nonlinear
function which makes the network a non-trivial dynamical system, and there is monotonicity
with respect to a partial ordering of the underlying space. This latter aspect is the most
important property. Together with the possibility of asynchronous dynamics it is the only
justification to use a coordinate notation, and it is probably the only way to establish a
connection to non-trivial results from dynamical systems theory. The networks will be
dynamical systems iiR", with the usual coordinate notation.

0305-4470/96/165019+15%$19.5@C) 1996 IOP Publishing Ltd 5019



5020 J Feng anl K P Hadeler
2. The systems

Here we define the system to be studied. There is a family of scalar fungfior® — R,
j = 1,...,n that describe the local action of the neurons. These functions are assumed
Lipschitz continuous and non-decreasing.

There is a real vectab € R", b = (b;). Its components can be considered as ‘inputs’.
Finally there is a real matrid = (a;;) of ordern that describes the interaction between
the neurons.

Discrete time is denoted = 0, 1, 2, ..., continuous timer € R. The discrete time
variable will be denoted as a superscriptor as an argument(r), the continuous time
variable always as = x (7).

We start with coordinate notation and then pass to a more convenient semi-abstract
setting. In coordinate notation the discrete time system is

X =3 " felxp) + by j=1....,n t=012.... (1)
k=1

We introduce the ‘Nemytskij operatoyf : R" — R” acting coordinate-wise

(f(x); = fix)) j=1...,n. (2
Then the system (1) reads

X = Af(x") +b. ®)

If f has identical components then we use the same symbol for the vector and the scalar
function, f = (f,..., f). In the corresponding continuous time system we introduce a
time constant > 0,

™ +x=Af(x)+b. (4)

In the older literature much attention has been paid to the fact that (3) can be written in
equivalent form

YT =AY + D). (5)
The correspondence is established by the transformation

y=fx) (6)

x = Ay +b. )

This equivalence is somewhat unexpected, since neither (6) nor (7) need to be invertible.
It may be worth the effort to study this phenomenon in greater detail.
Consider two functions, G : R" — R" and two discrete dynamical systems

Xt = G(F@x") 1r=0,1,2,... (8)
Yyt = F(G(")) t=012,.... 9)

If {x"} is a trajectory of (8), ther{y/}, y' = F(x"), is a trajectory of (9). If{y'} is a
trajectory of (9) then{x’}, x' = G(y") is a trajectory of (8).
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On the other hand, from® one getsy® = F(x%), thenG(y°) = G(F(x%)) which is
x! (and notx?). Thus the systems (8) and (9) are not conjugate. Going fraim y and
then back tax leads to the dynamical system (8) on the image se&t of . Nevertheless,
equations (8), (9) have essentially (after the first step) the same trajectories, limit sets, etc.
If the functions f; are invertible and differentiable then a similar transition is possible
in the system (4), leading to

ty = f(foNAYy —b— F)). (10)

Here f’ is the derivative off, and f~! is the inverse function.
In view of the coordinate notation it makes sense to introduce coordinate norms in the
form of weighted sum norms

Ixlle = ajlx;] (12)
j=1

wherea = (a4, ..., a,) is a vector of positive components.
If nothing else is said, thea = (1, ..., 1),

x|l = i X1 (12)
j=1
We assume that the functiorfs have a global Lipschitz bound;,
| fi ) — fi()| < Ljlu —vl. (13)
Let
L= maxL;. (14)

<j<n

Then the ‘right-hand side’ of the differential equation (4), i.e.

)'c:%[Af(x)+b—x] (15)

has a global Lipschitz bound. Therefore the solutions of the system (4) exist for all time.

We shall consider the special cases where the matias non-negative or non-positive
entries. Then we use the usual partial ordering of the sfcénduced by the cone
R ={x eR": x >0} Thusx > yif x; > y; for j = 1,...,n. If the matrix A has
non-positive entries, instead of equation (5) we write

Yy = fc— By (16)

with a non-negative matri® = (bji), bjx > 0, andc = (¢;). The corresponding continuous
time system is

X +x =—-Bf(x)+c. a7)

An important quantity is the spectral radius of a matrix, i.e. the maximal modulus of
any eigenvalue of that matrix. The spectral radius of a mairis calledp(B).

For any matrixB = (b;;) we introduce the absolute value of that matfi&] = (|bj«|).
It is known thatp(B) < p(|B]|) (see [2]).

Now we proceed to the qualitative analysis of the systems=(@) and (4).
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3. Dissipativeness and stationary points

The system is called dissipative if there is a compact invarianisetuch that for every
y9 € R” there is a finiter such thaty’ € M.

Proposition 1 Suppose one of the following hypotheses is satisfied.

(i) The functionsf; are uniformly bounded.

(i) The matrix A has non-negative entries and the functightave uniform upper bounds.
(iii) The matrix A has non-positive entries and the functiofishave uniform lower bounds.
Then the system (5) is dissipative.

Proof. The first assertion is trivial. The second and third are similar. We show the third
for the system (16). Lef(x) > a; for j =1,...,n and allx. Leta = (q;). Fory € R",
we havef(c — By) > a, and f(c — Ba — B(f(c — By) —a)) < f(c — Ba). ThusR" is
mapped into the compact convex #t= {x : a < x < f(c — Ba)}. O

Stationary solutions of the systems (3) and (4) satisfy the equation
x = Af(x)+b. (18)

Corollary 2. If any of the assumptions of proposition 1 is satisfied then the corresponding
system (5) or (16), (4) or (17), has a stationary point.

Proof. Apply Brouwer's fixed point theorem to the skf. O

Proposition 3 Let p = p(JA|) be the spectral radius of the matiiA| and letL be the
global Lipschitz constant fof. AssumepL < 1. Then the following is true.

(i) For any vectorb, equation (18) has a unique solutidn

(i) x, is a global attractor for the system (3).

(i) x, is a global attractor for the system (4).

Proof. Define the matrix|Alc = (lajx| +€) for € > 0. Thenp(|Ac) > p(JA]) and

o(JAle)L < 1 for € small. The matri{A|. is positive and it has a positive left eigenvector

a' = (g, ..., a,). With this vectora™ form the norm (11). In view of

I £ (Ay +b) — f(Az + D)l < LIA(Y — 2)I| < La"|A(y — 2)|
< La'|Alely —z| < Lp(JAlo)a |y — z|

< Lo(Alolly = zlI-

Thus the mapping — f(Ay + b) is a global contraction. This shows (i) and (ii). Now
consider equation (4). One can assume 1. Letx be the unique stationary solution and
let x(z) be any other solution. Define the measurable functifiis by

SiGxi (@) — fi(x))
di(t) = x(t) — X;
0 if x;(t) = %;
and the matrixD(r) = (d;(t)8;r). Then the functiory(r) = (x(t) — x)e’ satisfies the linear
equation

if x; (1) # X

y=AD()y.

A simple argument (see [11]) yields (7)|| < constant exp((p(|A|) +€)Lt) for any small
e > 0. [l
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At any pointx where f’(x) exists, the Jacobiai(x) of the right-hand side of (3) exists
and is given byAf’(x) where f’ is the diagonal matri)(];’(xj)éjk). Similarly, the Jacobian
of (15) is (1/7)(Af'(x) — I).

Proposition 4 Letx be a stationary point of the systems (3) and (4) such fh@t) exists.
If the spectral radius of the matrixf’(x) is less than 1 then the pointis a local attractor
of the system (3) as well as of the system (4).

Proof. Since the spectrum is in the unit circle, stability in the discrete time case follows.
In the continuous time case observe that the spectrumfofr) — I is located in the left
half-plane. O

Proposition 5 Let A be symmetric and assume that the functignare strictly increasing.
If f'(x) exists then the eigenvalues aff’(x) are real.

Proof. A is a symmetric and’(x) is symmetric and positive definite. Thus the eigenvalues
of the product are real. O

The contraction property in proposition 3 is just a suffient condition for the existence
and unigueness of the stationary state. In the case of piecewise linear mappings one can
obtain stronger results as will be shown in section 6.

4. Quasimonotone systems

We start from a general differential equation= F(x) whereF : R" — R”" is continuously
differentiable. LetR" be endowed with the partial ordering induced by the cifje With
respect to the nonlinear system it is important to distinguish between several notions of
positivity and invariance.

In some situations it is important to know whether non-negative solutions stay non-
negative, i.e. whether the first orthaRt in the state spacR" is positively invariant with
respect to the flow. Necessary and sufficient condition for this property to hold is that the
vector fieldF' is ‘inward’ on the boundary oR”, i.e. thatx > 0, x; = 0 implies F;(x) > 0.

Here we are interested in a quite different notion of positivity which is connected to the
positivity of the tangent vector of the flow rather than to the state.

Let F’(x) be the derivative (Jacobian) of the functidnat the pointx (not necessarily a
stationary point).F’ can be represented as the matrix of partial derivatives: (3 F;/dxy),
depending orx. SupposeF has the property that

dF;
—1(x)=0 for k# j and all x. (19)
Bxk
Then the system is called cooperative. Similarly, if
oF; .
8—(x) <0 for k£ andall x (20)
Xk

then the system is called competitive. If the system is either cooperative or competitive
then it is called quasimonotone. If the system is competitive then the syistera-F (x)
is cooperative and vice versa.
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Cooperative systems have several important properties. The most basic is the following.
If, for some 1o, the tangent vectok(to) € R, thenx(r) € R for all + > 1. A first
implication is thatx(z) is monotone, i.e. each component is non-decreasing. Thus either
x(t) does not stay bounded, or it converges to a point. Thus, in a cooperative system with
bounded trajectories;(ro) > 0 implies that the limit set is a point.

Now consider the system (5). The following observation follows from the monotonicity
of the functionf.

Proposition 6 Let the matrixA have the property that; > 0 (ajx < 0), for j # k. Then
the system (5) is cooperative (competitive).

Probably the most fundamental result on quasimonotone systems is the ‘flatness’ of
limit sets. To understand this result we need several definitions. Two paipte R" are
called related if eithex < y ory < x.

Theorem 7 [15, 16] Let the system be cooperative or competitive. kebe a limit set.
Thenw does not contain two related points.

From this result follows another important observation.

Theorem 8 [15, 16] Let the system be cooperative or competitive. pet 0 be a positive
vector and letd, = {x : p'x = 0} the hyperplane with normal vectgr. Let w be a limit
set. LetP be the projection ontd/, alongp. Let® = Pw. Then the mappin@ : v — &

is one-to-one. The séi is a limit set of an(n — 1)-dimensional system.

The theory of quasimonotone systems can be adapted to the discrete time case. Such
systems (actually the period maps in periodic differential equations) have been studied by
de Mottoni and Schiaffino [26] and by Hale and Somolinos [12]. Rétbe endowed with
the usual coordinates. Consider a mapping R” — R". The corresponding dynamical
systemx'*! = G(x’) is called cooperative if the Jacobid@H = 9G,/dx; has the property
that

0G;
——@x)=>0 for all x. (21)
axk

Similarly, if
G,
—(x) <0 for all x (22)
8xk

then the system is called competitive. For a cooperative system we find'thatx’~*
implies x*1 > x’. This observation has an elementary though interesting consequence.

Proposition 9 Let the system be cooperative or competitive. Supposevthmit set of
some point contains two related points. Then the limit set is a periodic orbit.

Proof. First assume that that the system is cooperative. a.étc »(x°) anda < b.
Then there aré < j such thatx’ < x/. We can assume = 0. Then the sequence”,
k =0,1,...is non-decreasing, it converges to solesimilarly x'*% — x/, 1 =1,2, ...
But x/ = x°. In the competetive case just consider the system generatétcbg which
is cooperative. O

Thus any limit set that contains infinitely many points does not contain any related
points.
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5. Classical neural networks, examples

5.1. The Hartline—Ratliff model

Originally this system was introduced to model the network in the component eye of the
horseshoe crahimulus [10, 13, 31]. It has been essential in understanding phenomena
like lateral inhibition, edge enhancement, contrast enhancement. Usually the equations are
written in the form

Yy =9(c — By"). (23)

Here ¢ is an input,B = (bj) is a non-negative matrixp;; > 0, andv is the rectifier
function

9(y) = yp = maxy,0) = 3(v + |y (24)
Thus the Hartline—Ratliff system is given in the form (3); the equivalent form (5) is

Xt =c— Bo'). (25)
The continuous version of the Hartline—Ratliff system is

X 4+ x =c — BY(x). (26)

The system (26) has been studied in [15, 27].

Corollary 10 The system (16) in general and the Hartline—Ratliff system in particular is
competitive. Hence limit sets are flat.

In principle it is easy to determine all stationary points of the system (23). Suppose
y is a stationary point. Them > 0 and, after renumbering coordinates= («, 0) with
u > 0. Choose an appropriate block partition of the maBiand the vector. Thenu is a
solution to a linear syster¥ + B)u = . Thus all possible stationary points can be found
by inspecting 2 systems of linear equations.

5.2. The Linsker model

The Linsker system has been proposed to simulate the primary steps of optical perception.
It has the form (5) with the functiorf = (f, ..., f) and

1 if x >1
fx)=1x if x| <1 (27)

-1 if x < —1.
In concrete applications it is written in the form

=y (y_,’- +b = g+ 9k]yi>- (28)
k=1
In this caseA = I — Q — 6 where[ is the identity matrix,Q = (gj), anded' is the
dyadic product (matrix of rank one) of the column vectore= (1,...,1)" and the row
vectoré = (64, ...,6,). The continuous version of the Linsker system is
ti+x=0U—-Q—ed)f(x)+b. (29)

For fixed Q this system is competitive for non-negatv@nd cooperative for large negative
0. After the publication of Linsker's paper [22] much attention has been paid to the analysis
of the dynamical properties of (28) [6-8, 23, 24].



5026 J Feng anl K P Hadeler

5.3. The obstacle problem and quadratic programming

The obstacle problem is a classical generalization of the Dirichlet problem, see, e.g., [19].
Let Q € R” be a bounded domain and Igty : Q@ — R, g : 9Q — R be given functions.
Findu : Q — R such that—=Au > fin Q, u > v in Q, (—Au — f)(u —¢) =0in Q,

u = g on 9. In the casen = 2 one can visualize andy as surfaces. At any point of

Q eitheru is ‘free’ and satisfies the differential equation or it ‘touches’ and equral©ne

can assumg = 0. Then define the convex skt= {u € H}(Q), u > ¥} and minimize the
functional J (u) = [,[Vu - Vu — 2fu]dx on K. Under suitable smoothness conditions, the
two problems are equivalent. The discrete analogue is the following quadratic optimization
problem. Given a positively definite symmetric matix= (c;x), and vectors! = (d;),

¥ = (), and let

l n n
J(x) = 2 Z CikXjXy — ;djxj. (30)

jk=1

Minimize J(x) under the conditiont > . Under suitable conditions the solution can
be approximated by the following procedure [3]. Choose a vectand a coordinate.
Solve the one-dimensional variational problem to minimide + ae;) wheree; is theith
coordinate vector. The solutionis= (z;), wherez; = x; for j # i andz; = xi+di—e;rAx.
Then determine the new vector according to

X=12z if j=iandz; > y;
z ifj=iandz,-<1p,~.

In other words

X = max(gﬁ[, xi +di — ZQ/J%) .
k=1
We introduce a new variable = x — ¢. Then the system assumes the form
Y= f(AY +b)

withA=1—-C,b=d+Cy, f(y) = y+. Thus we have shown that the discrete obstacle
problem is a network system that is a direct generalization of the Hartline—Ratliff system.

5.4. Sigmoid dynamics

It appears that the dynamical system (3) or (5), with a general matiro assumptions
an the signs of the entries nor symmetry) and general, though increasing, funttidras
no special properties (see section 6, however).

6. Uniqueness of the stationary solution
Under the hypothesis of proposition 1 there is a unique stationary state for everyinput

particular the stationary state is unique, i.e. the mappgingR” — R”", H(x) = x — Af(x)
is univalent. The hypothesis of proposition 1 is close to being optimal with respect to
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contractivity, but not with respect to univalence. The problem of univalence can be
approached in a general way. L& c R"” be an open domain.H : @ — R”" be a
continuously differentiable mapping. If the Jacobidf(x) is non-singular at a point € Q
then H is locally invertible (in a neighbourhood of). However, ifn > 1, then there are
examples whered’(x) is invertible for everyx € Q and nevertheless the map is not
univalent, even if the se® is convex.

The theorem of Gale and Nikaido gives a sufficient condition for univalence that is well
suited to neural networks. The s@tcalled an open rectangle (or an open order interval)
if Q={x=(): p<x <gq;,j=1...,n} wherep,q € R" with p; < ¢; for
Jj =1,....,n. A matrix is called aP-matrix iff all its principal minors are positive. A
matrix is called a wealk?-matrix if its determinant is positive and all its (other) principal
minors are non-negative.

Theorem 11 [9] Let 2 be an open rectangle, led : Q@ — R” be continuously
differentiable. Assume thatf’(x) is a weakP-matrix for all x € Q. ThenH is univalent.

We apply this theorem to equation (18).

Proposition 12 Let the functionf be continuously differentiable. Assume that for all
x € R" the matrix] — Af’(x) is a P-matrix. Then to everyp € R" there is at most one
stationary point.

Sandberg [29] considers a similar problem for the equatiert+ f(x) = b. Essentially
he shows thak +— Ax + f(x) is univalent if A is a weakP-matrix and f is increasing.
This result can be derived from the Gale—Nikaido theorem by observing that the sum of
a weak P-matrix and a non-negative diagonal matrix is a wedmatrix. For lack of
differentiability one cannot directly apply the Gale—Nikaido theorem to piecewise linear
mappings. We infer a result of Samelsenal [28] in the form given by Kuhn and é&wen
[11, 20]. LetS, T be any real matrices of order Define the mapping : R* — R" by

gx)=8xy —Tx_. (31)

Proposition 13 [28] The following assertions are equivalent:

(i) g is injective.

(ii) g is bijective.

(iii) Let P denote any diagonal matrix with diagonal entries fr@dnl}. The determinants

de(SP + T(I — P)))

are all non-zero and have the same sign.
(iv) S andT are invertible, and all principal minors ¢f-*T (and of T~1S) are positive.

This result can be applied to several problems, e.g. the Hartline—Ratliff model. The
equationx = ¢ — Bx for stationary solutions can be writtéh + B)x, — Ix_ = ¢, hence
it assumes the form (29) with = 7 + B, T = I. Thus we have the following result.

Proposition 14 [11] The following two assertions are equivalent.

(i) All principal minors of the matrix/ + B are positive.

(ii) For any inputc the Hartline—Ratliff system has a unique stationary point. If the matrix
B is symmetric then the following statement is equivalent to (i) or (ii)

(iii) The matrix I + B is positively definite.
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The uniqueness problem for the Linsker system is more involved. The equation for
stationary points is (18) withf given by (25). Thus one has to study the mapping
g(x) = x — Af(x) and solve the equatiop(x) = b. The hyperplanegx : x; = +1}
and{x : x; = —1} divide R" into a chamber syster@i of 3" ‘chambers’. This chamber
system has branching numbg¢C) = 4. The branching number is the smallest number
b such that each face of codimension 2 has at mhoseighbouring chambers (see [20]).
On a given chamber each of the coordinatess either less than-1 or between-1 and
+1 or greater than+1. The functiong : R” — R" is a piecewise affine mapping, i.e.
is well-defined and on each chamheiis an affine mapping. Consider a fixed chamber.
Assume the coordinates are numbered such that the first group satisfies1, the second
group—1 < x; < 1 and the third group; > 1. Define the corresponding block partition
of the matrixA and of the vectox. Then

X1 A A Az —e
x—Af(x)=|x2 |- Az A2 A2 X2 (32)
X3 Az1 Az Aszz e
1 —A12 0 X1 —Aq1e + Ajze
x—Afx)=|0 I-A»n O x2 | = | —Azie+ Agze (33)
0 —-Azx I X3 —Azze + Aszze
where I denotes the identity matrix of any order amd= (1,...,1)T. A mapping

g . R" — R" is called proper if for any sequencg € R"” with ||zx|| — oo also
lg(ze)]l — oo. In the present case the functignis proper since the termif(x) is
bounded. A piecewise affine mapping is called coherently oriented if on each chamber the
determinant of the affine map is non-zero and if all these determinants have the same sign.
In the present case one has to check the determinant of the matrix in (33). This determinant
is equal to detl — A,y) and this is a principal minor of the matrix— A.

We use a result from [20] that extends results of Schramm [30].

Proposition 15 [20] Let g be a piecewise affine mapping on a chamber systewith
branching numbeb(C) < 4. Then the following are equivalent.

(i) g is coherently oriented and proper.

(ii) g is bijective.

From this proposition we infer the following theorem.

Theorem 16 The following two assertions are equivalent:

(i) All principal minors of the matrixI — A are positive.

(ii) For any inputb the Linsker system has a unique stationary point. For a symmetric
matrix A the following statement is equivalent to (i) or (ii):

(iii) The matrix I — A is positively definite.

If the matrix A has the formA = I — Q — ¢6" then one has to check the principal
minors of the matrixQ + e67.
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7. Asynchronous dynamics

In equations (3), (5) we have considered dynamical systems in the classical sense. These
dynamical systems have the form of networks: There is a natural choice of coordinates
j =1,...,n. By definition the dynamics is synchronous. In these discrete time systems
one can also consider asynchronous dynamics. An asynchronous dynamics requires two
definitions. First one has to define the local action, i.e. the evaluation of a single neuron.
Then one has to specify the process which defines the sequence of evaluation sites. The
first step is standard. The evaluation at positiaa given by

Vi it j #i

(F(y); = ﬁ(Zn:aikykert) ifj=i. (34)
k=1

For the second step one can specify a stochastic process that ensures that all neurons are
evaluated again and again. Here we use the simple procedure tlitit treuron is selected
with probabilitya; > 0 (3_; a; = 1). A less simple process that makes repeated evaluation
of the same neuron less probable, has been suggested by Hopfield [5, 17].
The notion of dissipativeness can be carried over to the case of asynchronous dynamics.
A set M € R" is called invariant under the asynchronous dynamics;{/) c M for
i =1, ...,n. The system is called dissipative with respect to the asynchronous dynamics
if for every starting point the sequence of iterates reaches th#fseta finite number of
steps a.s.

Proposition 17 Suppose any of the hypotheses of proposition 1 is satisfied. Then the
system is dissipative with respect to the asynchronous dynamics.

Proof. Apply the proof of proposition 1 to the individual components. The following
observation leads to bounds for the stop time (with respect to arriviig)iin case (i) the

iterate is inM after each neuron has been evaluated at least once. In cases (ii) and (iii)
the iterates are iM after ‘two full sweeps’, i.e. after the following has happened: in a
first ‘sweep’ each neuron has been evaluated at least once to get the lower bound (in case
(iii)), in a second sweep each neuron is evaluated once to get the upper bound. We need
the following lemma.

Lemma 18 Let f : R — R be a continuous strictly increasing function. Thendor € R
the following inequality holds:

f(@)
f@z— flaz = ) dv. (35)
f(a)

Equality holds only for; = a.

Proof. It suffices to prove the lemma for continuously differentialfleThe general case
follows by approximation. The functio(z) = f;f(u) du is convex, thus by Taylor's
formula

F(z) > F(a)+ F'(a)(z — a)
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F'(a)(z —a) < F(z) — F(a)

F@G —a) < /'f(u) du

— f@)z — fa)a — / £ du

by partial integration. Substitute= f(u), dv = f’'(u)du to obtain

f(@)
f@z < f@)z— ) dv
f(a)
which is equation (35). The assertion on equality follows by considering the remainder
term in Taylor’'s formula. O

Next we consider the special case thatis a symmetric matrix. Define an energy
function

n Vi B 1 n n
Viy) = Z/O f7Hs) ds — > Z ajk Y Ve — me- (36)
./_1 j,k—l j—l
Theorem 19 Let A = (@jx) be symmetric andy;; > 0 for j = 1,...,n. Then, for

VIFi(y) < V() for ye R" with ye f(R).
The equalityV (F;(y)) = V(y) holds if and only ifF;(y) = y.

Proof. Denotey = (y;) and F;(y) =y = (3;). Theny; = y; for j # i and

yi = fi (Z @ik Y + bi>~ (37)
k=1

Using symmetry, the functiondl (y) can be written

Yj 1 Yi
v =Y /0 R ds =5 Y awn = by + /0 f7w) dv

J# J kA J#i
1 2
- Zaikyiyk — by — 5%i Y (38)
ki
. Yi 1 1 Vi 1
V@ =2 fT s =0 > apye— Y b+ | fHw) dv
j#i 0 ok i 0
- -1
- Zaik)’iyk —biyi — i i - (39)
ki

Thus, withz = >, auyk +bi, § = f(2),

Vi 1
VG = Vo) = [ £ do = S - o - 5 -7~ bl = 30
Yi k#i

fi@) 1 1
= - G@-yz [ 7 - a0 (40)
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There isa € R with y; = f;(a). From lemma 18 it follows thaV (F;(y)) < V(y). Suppose

the right-hand side in (40) vanishes. Then the first term vanishes. In view of Lemma
18z = a andy; = fi(z) = fi(a) = yi, F;(y) = y. By linear superposition we get the
corresponding result for the stochastic selection procedurey’t-ée the random variable
that is obtained by evaluating thigh unit with probabilitya;. Then

EVGH™HIY)Y < Ve for y e f(R"). (41)

Therefore, the functiofV is a supermartingale on the date R" : y € f(R)}.

A sufficient condition for convergence df (y’) a.s. is uniform integrability of the
supermartingale. A sufficient condition for the latter property is the existence of a lower
bound. In general the functiovi will not be bounded below. A lower bound can be ensured
in several ways. Either one can prove that the system is dissipative (cf proposition 17) and
thus restrict the problem to a compact set. Or one can require that the leading t&m of
grows to+oo at least quadratic fofy|| — oo. Thus we get the following results. For the
system (5) letS be the set of stationary points. Fer> 0 let S, = U,csB(y, €) where
B(y, €) is the open ball with centey and radiuse. For any realizationy’} define the
stopping time as irff : y' € S.}.

Theorem 20 Let A = (aj;) be symmetric and;; > 0 for j = 1,...,n. Let the system
be dissipative. Then the stopping time is finite a.s.

Proof. As long asy’ ¢ S.
g0 = E(VQOTy) — V') <O0. (42)

Let C be the compact set in the definition of dissipativeness. Theréisd(¢) > 0 such
that—g(y") > § for y' € C \ S.. Hence

M, =V (y'")+18 (43)
is also a lower bounded supermartingale 6= C \ S.. According to Doob’s theorem [4]

M. ., is a lower bounded supermartingale whera r = min{z, t}. From the convergence
theorem for supermartingales it follows that

lim M., =M < oo as. (44)
—>00

thus
tlim M, = llim (V™) +8(t At)) <oco as. (45)

Note thatV (y*™) is itself a bounded supermartingale, therefore lim(t A7) < o© a.s.
which impliest < oo a.s. O

Corollary 21 (i) Let the matrix in the Linsker system be symmetric, i@.+ fe' is
symmetric, and - ¢g;; — 6, > 0 for j = 1,...,n. Then the stopping time is almost
certainly finite.

(i) Let the matrix B = (b;) of the Hartline—Ratliff system be symmetric (and of course
non-negative). Leb;; = 0 for j = 1,...,n. Then the stopping time is finite a.s.
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The linear casef (y) = y shows that the symmetry of the matrixis a sufficient, but
not a necessary condition. If the matrik has non-negative entries and if the selection
procedure is cyclic then a necessary and sufficient condition for convergence to equilibrium
is p(A) < 1 (the Stein—Rosenberg theorem, see [18]).

In the synchronous dynamics the existence and uniqueness of a stationary point, even if
it is a local attractor, is not sufficient to ensure global stability. The behaviour is different
with asynchronous dynamics.

Theorem 22 Assume the hypothesis of theorem 20. Further assume that there is exactly
one stationary poinf. Then the asynchronous dynamics converges ta.s., i.e. the
probability distributionu, of y' converges td;.

Proof. see [21]. The unigeness of the stationary point has been considered in propositions
and theorems 3, 11, 14. O
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